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Abstract—To enable the practical electronic cash systems,
significant attention has been paid to the partially blind
signature because of its unlinkability and unforgeability. To
the best of our knowledge, most of partially blind signature
schemes are constructed under either the traditional public
key certificate based system or the ID-based system, which
may incur significant efforts in certification management
and/or revocation. In this paper, we introduce a novel
approach for partially blind signature with self-certified
public keys. This is the first research effort for significantly
reducing the certificate management and revocation in par-
tially blind signature, and is characterized by the adoption
of bilinear pairings and the analytic techniques of provable
security.

Keywords – Partially blind signature, self-certified, bilin-
ear pairings, provable security.

I. INTRODUCTION

Blind signature is a very useful cryptographic tech-
nique [1], [2], which allows a user to get a signature
without giving the signer any information about the actual
message or the resulting signature. A typical blind signa-
ture scheme must satisfy the following two fundamental
characteristics: Blindness and Unforgeability.

• Blindness: A blind signature allows a user to obtain
a valid signature on message m without revealing
anything about the message m to the signer. In
addition, the signature is not traceable in the sense
that the signer cannot determine when he or she
signed this message after the signature is published,
although he or she knows that it is really signed by
him or her.

• Unforgeability: Only the original signer can generate
valid signatures, while anyone else cannot.

Because of the blindness and unforgeability, the blind
signature has been extensively used as electronic cash
and electronic votes in electronic commerce and elec-
tronic business systems [3], where individual’s privacy
(anonymity) is of particular importance. Over the past
years, many blind signature schemes have been proposed
in [4]–[6]. However, when the previously reported blind
signature schemes are used in a practical electronic cash
system, they are subject to some common problems, such
as the unlimited growth of the bank’s database which
keeps all the spent e-coins for preventing double spending
and the bank’s uninscribing the value on the blindly
issued e-coins. To cope with these problems, the concept
of partially blind signature was introduced by Abe and

Fujisaki [7]. A partially blind signature is an extension
of blind signature that allows a signer to produce a blind
signature on a message for a user. The signature also
explicitly includes commonly agreed information which
remains clearly visible despite of the blinding process.
Because of the partial blindness property, a partially blind
signature scheme is more efficient than ordinary blind
signature schemes when it is used in an electronic cash
system. Therefore, in recent years, many partially blind
signature schemes have appeared [8]–[11].

However, for these partially blind signature schemes,
most of them are constructed under either the traditional
certificate based system [9], [10] or the ID-based system
[11]. Recently, the notion of self-certified public key
system was introduced in [12], where the private key of
each user is only known to the user himself, while the cor-
responding public key is derived from the signature of the
user’s identity and private key, signed by a trusted system
authority SA. The self-certified system can be taken as
an intermediate between the traditional certificate based
systems [13] and the ID-based systems [14]. Compared
with the former, it can implicitly validate the user’s public
keys; while compared with the latter, it can get rid of the
key escrow issues [15]. To the best of our knowledge,
a partially blind signature under the self-certified public
key system has never been explicitly reported, which is
the focus of this research.

Concretely, our main contributions in this paper are
in two-fold: (i) We formalize the definition and security
model for self-certified partially blind signature; (ii) We
present the first self-certified partially blind signature
scheme based on the bilinear pairings [16], [17]; and
use the techniques from provable security to analyze its
security [18], [19].

The remainder of this paper is organized as follows.
In Section II, we provide a formal definition and security
model for self-certified partially blind signature. In Sec-
tion III, we review the bilinear pairings and the underlying
problems which form the basis of this study. Then, the
proposed self-certified partially blind signature scheme
will be presented in Section IV, followed by the security
proof in Section V. Finally, we draw our conclusions in
Section VI.

II. NOTATIONS AND DEFINITIONS

In this section, we define the self-certified partially
blind signature together with its security notions.
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A. Notations

Let N = {1, 2, 3, . . .} be the set of positive integers. If
x, y are two strings, then |x| denotes the length of x and
x‖y represents the concatenation of x and y. If k ∈ N

then 1k denotes the string of k ones. If S is a set, then
|S| denotes its size and s

R←− S denotes the operation of
picking a random element s of S uniformly.

B. Definition of self-certified partially blind signature

Definition 1 (Self-certified Partially Blind Signature):
A self-certified partially blind signature SCPBS
scheme consists of the following four algorithms
{Setup, KGen, BSign, Verify}:

• System parameter setup algorithm Setup: it is a
probabilistic algorithm which takes the security pa-
rameter k as input, and outputs the system parame-
ters params and the master secret key masterkey.
The system parameters params are publicly known,
while the masterkey is only known by the trusted
system authority SA.

• Key generation algorithm KGen: on input of the sys-
tem parameters params, a user with identity ID first
generates partial public and private key pair (pk, sk),
and submits (pk, ID) to the trusted system authority
SA. SA then takes (pk, ID, params, masterkey) as
inputs, and returns another partial private key sk′ to
the user via a secure channel.

• Blind signing algorithm BSign: on input of a mes-
sage m and the system parameters params, a signer
A with (IDA, pk, sk, sk′) and a user B first negoti-
ates an agreed information info = ∆, then generates
a blind signature σ on message m by interaction.

• Signature verifying algorithm Verify: On input of
(σ,m, info, IDA, pk, params), this algorithm out-
puts “1” if the signature-message pair (σ,m) is valid
with respect to IDA, pk, info, and “0” otherwise.

The four algorithms must satisfy the consistency con-
straint of the self-certified partial blind signature, i.e.,

∀ m : Verify(σ,m, info, IDA, pk, params) = 1,
where σ = BSign(IDA, pk, sk, sk′, info, params).

C. Security notions for self-certified partially blind sig-
nature

The security of a self-certified partially blind signa-
ture scheme should meet two requirements: the partial
blindness and the unforgeability. We define that a self-
certified partially blind signature scheme is secure if it
satisfies these two requirements.

First, adopting the similar notion in [8], we define
the partial blindness of the self-certified partially blind
signature.

Definition 2 (Partial Blindness): Let B0 and B1 be
two honest users that follow the blind signature issu-
ing protocol in a self-certified partially blind signature
SCPBS scheme, and let A be a signer that is involved
in the following game with B0 and B1.

• (IDA, pk, sk, sk′) ← KGen; the signer A and the
trusted system authority SA first use the key gen-
eration algorithm to generate the public and private
key pair (IDA, pk, sk, sk′) of A.

• (m0,m1, info) ← A; the signer A produces two
messages m0 and m1, together with an agreed
information info.

• Choose a random bit b ∈ {0, 1}, and place mb

and m1−b on the private input tapes of B0 and B1,
respectively, where b is not disclosed to the signer
A. Besides this, (info, IDA, pk) are placed on the
public input tapes of B0 and B1, respectively.

• The signer A engages in the blind signature issuing
protocol with B0 and B1 in arbitrary order.

• If B0 and B1 output (info,mb, σb) and
(info,m1−b, σ1−b) on their private tapes,
respectively, then those outputs are given to
A. Otherwise, ⊥ is given to A.

• The signer A outputs b′ ∈ {0, 1} as the guess of b.
A wins the game if b′ = b.

We define the advantage of A as

AdvPB
SCPBS(A) = |2Pr[b′ = b]− 1|

where Pr[b′ = b] denotes the probability that b′ = b. We
say a SCPBS scheme is partially blind if the advantage
AdvPB

SCPBS(A) is negligible in the game.

Security against existential forgery under chosen mes-
sage attack. For digital signatures, the well-known strong
security notion is existential forgery against adaptive
chosen message attack (EF-CMA) introduced in [20].
Therefore, with respect to the unforgeability of SCPBS
scheme, we will define it in the same line. In the random
oracle model, we consider an EF-CMA adversary A
as follows: The adversary A is fed with the system
parameters params and the signer A’s identity IDA and
public key pk; also allowed to access to the signing oracle
OS and the random oracle OH . In the end, the adversary
A returns a new valid signature-message pair (σ�,m�).
There is a natural restriction that the signature σ� has not
been obtained from the signing oracle OS before.

Definition 3 (Unforgeability): Let SCPBS be a self-
certified partially blind signature scheme, let A be an EF-
CMA adversary against SCPBS scheme. We consider
the following random experiment, where k is the security
parameter:

Experiment ExpEF-CMA
SCPBS,A(k)

1. (params, masterkey)← Setup(k),

2. (IDA, pk, sk, sk′)← KGen(IDA, params, masterkey)

3. (σ�, m�)← AOH ,OS (IDA, pk, params, info)

4. return Verify(σ�, m�, info, IDA, pk, params)

We then define the success probability of A via

SuccEF-CMA
SCPBS,A(k) = Pr

[
ExpEF-CMA

SCPBS,A(k) = 1
]

Let τ ∈ N and ε ∈ [0, 1]. We say that the SCPBS is
(τ, ε)-secure if no EF-CMA adversary A running in time
τ has a success SuccEF-CMA

SCPBS,A(k) ≥ ε.
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III. BASIC CONCEPTS ON BILINEAR PAIRINGS

Bilinear pairing is an important cryptographic primitive
and has recently been applied in many positive appli-
cations in cryptography [16], [17]. Let G1 be a cyclic
additive group and G2 be a cyclic multiplicative group
of the same prime order q. We assume that the discrete
logarithm problems in both G1 and G2 are hard. A
bilinear pairing is a map e : G1 × G1 → G2 which
satisfies the following properties:

• Bilinear: e(aP, bQ) = e(P,Q)ab, where P,Q ∈ G1,
and a, b ∈ Z

∗
q .

• Non-degenerate: There exists P ∈ G1 and Q ∈ G1

such that e(P,Q) �= 1G2 .
• Computability: There exists an efficient algorithm to

compute e(P,Q) for all P,Q ∈ G1.

From [16], we note that such a bilinear pairing can be
realized using the modified Weil pairing associated with
supersingular elliptic curve. For instance, let p be a prime
such that p = 6q − 1 for some prime q > 3. Let E be
a supersingular curve defined by y2 = x3 + 1 over Fp.
The group of rational points E(Fp) = {(x, y) ∈ Fp×Fp :
(x, y) ∈ E} forms a cyclic group of order p+1. Because
the prime q satisfies the condition 6q = p + 1, the group
of points order q in E(Fp) also form a cyclic subgroup,
namely G1. Let P be the generator of G1, and G2 be the
subgroup of Fp2 containing all elements of order q. Then,
a bilinear pairing e is a computable map between G1 and
G2. We define the general bilinear parameter generator
Gen as follows.

Definition 4 (Bilinear Parameter Generator): A bilin-
ear parameter generator Gen is a probabilistic algorithm
that takes a security parameter k as input and outputs
a 5-tuple (q, G1, G2, e, P ) as the bilinear parameters,
including a prime number q with |q| = k, two cyclic
groups G1, G2 of the same order q, an admissible bilinear
map e : G1 ×G1 → G2 and a generator P of G1.

Next, we review two related underlying mathematics
problems in G1, which will serve as the basis for our
proposed SCPBS scheme.

• Computational Diffie-Hellman (CDH) Problem.
Given P, aP, bP ∈ G1, for unknown a, b ∈ Z

∗
q ,

compute abP ∈ G1.
• Decisional Diffie-Hellman (DDH) Problem. Given

P, aP, bP, cP ∈ G1, for unknown a, b, c ∈ Z
∗
q ,

decide whether c = ab mod q. It is known that
DDH problem in G1 is easy and can be solved in
polynomial time according to e(P,P )ab=e(P,P )c

[16].

Definition 5 (CDH Assumption): Let Gen be a
bilinear parameter generator, and A an adversary that
takes as input a 5-tuple (q, G1, G2, e, P ) generated by
Gen and (X,Y ) ∈ G

2
1. A returns an element Z ∈ G1.

We consider the following random experiment, where k
is a security parameter.

Experiment ExpCDH
Gen,A(k)

1. (q, G1, G2, e, P )←− Gen(k),

2. x
R←− Z

∗
q , X = xP ,

3. y
R←− Z

∗
q , Y = yP ,

4. Z ← A(q, G1, G2, e, P, X, Y )

5. return 1 if Z = xyP , 0 otherwise

We define the corresponding success probability of A
in solving the CDH problem via

SuccCDH
Gen,A(k) = Pr

[
ExpCDH

Gen,A(k) = 1
]

Let τ ∈ N and ε ∈ [0, 1]. We say that the CDH is (τ, ε)-
secure if no polynomial algorithm A running in time τ
has success SuccCDH

Gen,A(k) ≥ ε.

IV. SELF-CERTIFIED PARTIALLY BLIND SIGNATURE

SCPBS SCHEME

In this section, we propose the self-certified partially
blind signature SCPBS scheme. The details are as fol-
lows.

Setup: Given the security parameter k, the trusted sys-
tem authority SA first generates 5-tuple (q, G1, G2, e, P )
by running the bilinear parameter generator Gen(k), then
chooses a random number s

R←− Z
∗
q as masterkey kept by

himself, and computes Ppub = sP . Next, SA also picks
two cryptographic hash functions H : {0, 1}∗ → G1,
H1 : {0, 1}∗ → Z

∗
q , and outputs the system parameters

params=(q, G1, G2, e, P,H,H1, Ppub) in the end.

KGen: When the signer A (with his identity IDA) wants
to join the system, A first chooses a random number
xA

R←− Z
∗
q as his partial private key sk and computes

the public key pk = PA = xAP . Then, A sends
(IDA, PA) to the trusted system authority SA. After re-
ceiving (IDA, PA), SA uses the masterkey s to compute
the partial private key sk′ = dA = sH(IDA‖PA) and
returns it to A via a secure channel1. Clearly, A can
check the validity of dA by the equation e(dA, P ) =
e(H(IDA‖PA), Ppub), since the partial private key dA

is actually a BLS short signature due to Boneh et al.
[17]. In the end, the private key of A is (xA, dA).
Note that this algorithm here is very similar as the key
generation algorithm of Shao’s self-certified signature
scheme proposed in [15].

BSign: The signer A and a user B first negotiate an
agreed common information info = ∆. Then, to obtain
a blind signature on message m, as shown in Figure. 1,
they execute the following steps:

• Step 1: The signer A first chooses a random number
r

R←− Z
∗
q , and computes R′ and S′, where

R′ = rP
S′ = rH(IDA‖PA) (1)

1SA can send dA to A without using a secure channel as follows:
he sends DA = dA + sPA to A, and then A recovers dA = DA −
xAPpub, since sPA = xAPpub = xAsP .
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Signer A User B

← info = ∆→
r

R←− Z∗
q

R′ = rP, S′ = rH(IDA‖PA)
R′,S′

−−−−−−−−−−−→
α, β, γ

R←− Z∗
q

R = αR′ + γ(Ppub + PA)
S = αS′ + αβH(IDA‖PA)− γH(∆)

h = α−1H1(m, R, S) + β mod q
h←−−−−−−−−

ς̄ = (r + h)(xAH(IDA‖PA) + dA) + rH(∆)
ς̄−−−−−−−→

ς = ας̄
σ = (R, S, ς) is the signature of m.

Fig. 1. Partially blind signature between A and B in SCPBS scheme

Then, A sends (R′, S′) to the user B.
• Step 2: The user B chooses three random numbers

α, β, γ
R←− Z

∗
q , computes R,S and h, where

R = αR′ + γ(Ppub + PA)
S = αS′ + αβH(IDA‖PA)− γH(∆)
h = α−1H1(m,R, S) + β mod q

(2)

Then, B sends h to A.
• Step 3: The signer A computes ς̄ and sends it to

user B, where

ς̄ = (r + h)(xAH(IDA‖PA) + dA) + rH(∆)
= (r + h)(xA + s)H(IDA‖PA) + rH(∆)

(3)
• Step 4: Finally, the user B unblinds the received ς̄

as ς , where

ς = ας̄ = α(r+h)(xA +s)H(IDA‖PA)+αrH(∆)
(4)

In the end, the resulting signature for message m
and the agreed information ∆ is σ = (R,S, ς).

Verify: The validity of the signature σ = (R,S, ς) can
be checked by the following equality

e(ς, P ) = e(S + H1(m,R, S)
H(IDA‖PA), Ppub + PA)e(H(∆), R)

(5)
If it does hold, the signature σ = (R,S, ς) can be

accepted as valid, otherwise it is rejected. Since

e(S + H1(m, R, S)H(IDA‖PA), Ppub + PA)e(H(∆), R)
= e(αS′ + αβH(IDA‖PA)− γH(∆) + H1(m, R, S)

H(IDA‖PA), (s + xA)P )e(H(∆), αR′ + γ(Ppub + PA))
= e(αrH(IDA‖PA) + αβH(IDA‖PA)− γH(∆)+

H1(m, R, S)H(IDA‖PA), (s + xA)P )
e(H(∆), αrP + γ(Ppub + PA))

= e(αrH(IDA‖PA) + αβH(IDA‖PA)− γH(∆)+
H1(m, R, S)H(IDA‖PA), (s + xA)P )
e(H(∆), αrP ) · e(H(∆), γ(Ppub + PA))

= e(αrH(IDA‖PA) + αβH(IDA‖PA) + H1(m, R, S)
H(IDA‖PA), (s + xA)P )e(H(∆), αrP )

= e((αr + αβ + H1(m, R, S))H(IDA‖PA), (s + xA)P )
e(αrH(∆), P )

= e((αr + αh)H(IDA‖PA), (s + xA)P ) · e(αrH(∆), P )
= e(α(r + h)(s + xA)H(IDA‖PA), P ) · e(αrH(∆), P )
= e(α(r + h)(s + xA)H(IDA‖PA) + αrH(∆), P )
= e(ς, P ) �

Next, we investigate the performance of the proposed
SCPBS scheme in terms of its time complexity for
KGen, BSign and Verify algorithms. For convenience,
the notations used in the time complexity analysis are pre-
sented first as follows: Tpmul represents the time for one
point multiplication computation in G1; Tpadd represents
the time for one point addition computation in G1; Tpair

denotes the time for one pairing computation and Tmhash

denotes the time for one Map2Point hash function. Note
that the time complexity for other computation operations,
such as the multiplication in Z

∗
q , the multiplication in G2,

and ordinary hash operation H1, are ignored, since they
are much smaller than Tpmul, Tpadd, Tpair, and Tmhash.
We summarize the time complexity of our proposed
SCPBS scheme in Table I, which shows that the time
complexity in KGen, BSign and Verify algorithms is
2Tsmul + 2Tpair + 2Tmhash, 11Tsmul + 6Tpadd + 2Tmhash

and Tpmul + 2Tpadd + 3Tpair + 2Tmhash respectively.

TABLE I
TIME COMPLEXITY FOR OUR PROPOSED SCPBS SCHEME

KGen BSign Verify

SA Tpmul + Tmhash

Signer
A

Tpmul + 2Tpair +
Tmhash

5Tpmul +
2Tpadd + Tmhash

User B 6Tpmul +
4Tpadd + Tmhash

Verifier Tpmul +2Tpadd +
3Tpair + 2Tmhash

For many blind signature applications, the speed of
signature verification is crucial for determining the feasi-
bility of a blind signature scheme. As shown in Table I, It
can be seen that the proposed SCPBS scheme is efficient.

V. SECURITY ANALYSIS

In this section, we study the security of the proposed
SCPBS scheme, and the security results are given in the
following two theorems.

Theorem 1. The proposed SCPBS scheme is partially
blind.

Proof. We consider the signer A in the game defined in
Definition 2. Suppose A is given ⊥ in step 5 of the game,
A determines b with a probability 1

2 , which is exactly the
same as a random guess of b.

Suppose that A gets signatures (∆,m0, σ0) and
(∆,m1, σ1) instead of ⊥ in step 5 of the game. For
i ∈ {0, 1}, let (R′

i, S
′
i, hi, ς̄i) be the view of data

exchanged during the signature issuing protocol, and
(R0, S0, ς0,m0,∆) and (R1, S1, ς1,m1,∆) are given to
A.

In order to prove the partial blindness, we will show
that given a valid signature (R,S, ς,m, c) and any view
(R′, S′, h, ς̄), there always exists a unique tuple of blind
factors α, β, γ ∈ Z

∗
q . And since the blind factors are

chosen randomly, the partial blindness of the SCPBS
scheme will naturally satisfy. Our proof is similar to that
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in [6]. Given a valid signature (R,S, ς,m, c) and any view
(R′, S′, h, ς̄), the following must hold for α, β, γ ∈ Z

∗
q :

ς = ας̄ (6)

h = α−1H1(m,R, S) + β mod q (7)

R = αR′ + γ(Ppub + PA) (8)

S = αS′ + αβH(IDA‖PA)− γH(∆) (9)

From Eq. (6), it is obvious that an α = logς̄ ς ∈ Z
∗
q

exists uniquely. Then, we can also get a unique β =
h− α−1H1(m,R, S) mod q from Eq. (7), and a unique
γ = log(Ppub+PA) (R− αR′) from Eq. (8).

Next, we need to show that such α, β and γ will also
satisfy Eq. (9). Here, due to the Non-degenerate of the
bilinear pairing, we know

S = αS′ + αβH(IDA‖PA)− γH(∆)
⇒ e(S, Ppub + PA)

= e(αS′ + αβH(IDA‖PA)− γH(∆), Ppub + PA)

Therefore, we only need to show α, β and γ satisfy the
following equality

e(αS′ + αβH(IDA‖PA)− γH(∆), Ppub + PA)
= e(S, Ppub + PA)

On the other hand, because of the validity of signature
(R,S, ς,m, c), we have

e(ς, P ) = e(S + H1(m,R, S)
H(IDA‖PA), Ppub + PA)e(H(∆), R)

that is,

e (H1(m,R, S)H(IDA‖PA), Ppub + PA)−1

= e (ς, P )−1
e (S, Ppub + PA) e (H(∆), R)

Then,

e(αS′ + αβH(IDA‖PA)− γH(∆), Ppub + PA)
= e(αS′ + α(βH(IDA‖PA)− α−1γH(∆)), Ppub + PA)
= e(logς̄ ς · S′ + logς̄ ς · (βH(IDA‖PA)− (logς̄ ς)−1·

γH(∆)), Ppub + PA)
= e(logς̄ ς · S′ + logς̄ ς · βH(IDA‖PA), Ppub + PA)·

e(−γH(∆), Ppub + PA)
= e(logς̄ ς · S′ + logς̄ ς · (h− α−1H1(m, R, S))

H(IDA‖PA), Ppub + PA) · e(−γH(∆), Ppub + PA)
= e(logς̄ ς · (r + h)H(IDA‖PA), Ppub + PA)

e(logς̄ ς · α−1H1(m, R, S)H(IDA‖PA), Ppub + PA)−1

e(−γH(∆), Ppub + PA)
= e(logς̄ ς · (r + h)(s + xA)H(IDA‖PA), P )

e(H1(m, R, S)H(IDA‖PA), Ppub + PA)−1

e(−γH(∆), Ppub + PA)
= e(logς̄ ς · (r + h)(s + xA)H(IDA‖PA), P )

e (ς, P )−1 e (S, Ppub + PA) e (H(∆), R)
e(−γH(∆), Ppub + PA)

= e(logς̄ ς · (r + h)(s + xA)H(IDA‖PA), P ) · e (ς, P )−1

e (S, Ppub + PA) e
(
H(∆), logς̄ ς ·R′)

= e(logς̄ ς · (r + h)(s + xA)H(IDA‖PA), P )
e
(
logς̄ ς · rH(∆), P

) · e (ς, P )−1 e (S, Ppub + PA)
= e(logς̄ ς · ((r + h)(s + xA)H(IDA‖PA) + rH(∆)), P )

e (ς, P )−1 e (S, Ppub + PA)
= e(ς, P )e(ς, P )−1e (S, Ppub + PA)
= e(S, Ppub + PA)

Hence, from the above deduction, the blind factors α, β
and γ always exist which lead to the same relation defined
in the blind signature issuing protocol.

Thus, going back to Step 6 of the game defined in
definition 2, the signer A succeeds in determining b with
probability 1

2 .
Finally, taking these two cases into account, the proba-

bility that A wins the game is 1
2 . Therefore, our proposed

SCPBS scheme is partially blind. This completes the
proof. �

Theorem 2. Let Gen be a bilinear parameter generator,
and assume that the hash function H and H1 are ran-
dom oracles. Let A be an EF-CMA adversary against
the SCPBS scheme in the random oracle model, that
produces an existential forgery with probability ε =
SuccEF-CMA

SCPBS,A, within running time τ , making qh1 and
qs queries to the random oracle OH1 and to the signing
oracle OS . If ε ≥ 10(qs + 1)(qs + qh1)/q, then the
CDH problem in G1 can be resolved with expected time
τ ′ ≤ 120686qh1τ/ε.

Proof. Adopting the game simulation approach due to
Shoup [19], we define a sequence of game Game0,
Game1, · · · , of modified attacks starting from the actual
EF-CMA adversary A. All the games operate on the
same underlying probability space: the public and private
keys, the coin tosses of A and the random oracles. Let
(q, G1, G2, e, P ) be a 5-tuple generated by Gen(k), where
k is the security parameter. Let H : {0, 1}∗ → G1,
H1 : {0, 1}∗ → Z

∗
q be two cryptographic hash functions,

and both behave as the random oracle in the simulation.
Let (X∗ = xP, Y ∗ = yP ) be a random instance of
CDH problem. We will use the adversary A’s capability
to compute xyP .

Game0: This is an actual game in the random
oracle model. The KGen algorithm generates
params=(q, G1, G2, e, P,H,H1, Ppub) and signer
A’s public and private key (IDA, PA, xA, dA =
sH(IDA‖PA)). Then, the adversary A is fed
with params=(q, G1, G2, e, P,H,H1, Ppub) and
IDA, PA,H(IDA‖PA) and an agreed common
information info = ∆. A is also allowed to access
a random oracle OH1 and a signing oracle OS . In the
end, the adversary A outputs its blind signature forgery
(σ�,m�), then we check whether it is a valid signature
or not. We denote Forge0 to be the event that the forged
signature (σ�,m�) is valid and use the notation Forgej

for the same meaning in any game Gamei. By definition,
we have

ε = SuccEF-CMA
SCPBS,A = Pr[Forge0]. (10)

Game1: In this game, we implant the challenge X∗ =
xP to the simulation. We first choose two elements
P1, P2 ∈ G1 such that P1 + P2 = X∗ = xP . Then,
we set Ppub = P1 and PA = P2. Since Ppub and PA are
uniformly distributed in G1, the probability distribution
is unchanged. Therefore, we have

Pr[Forge1] = Pr[Forge0]. (11)
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Game2: In this game, we implant the challenge Y ∗ = yP
to the simulation. Because H behaves as a random oracle,
when we set H(IDA‖PA) = Y ∗ = yP and H(∆) be
a random element in G1, this game is identical to the
previous one in the random oracle model. Hence, we have

Pr[Forge2] = Pr[Forge1]. (12)

Game3: In this game, we will simulate the random
oracle OH1 by maintaining a ΛH1-list. When a fresh
query (m,R, S) is queried, we choose a random number

v
R←− Z

∗
q and compute H1(m,R, S) = v We then store

(m,R, S, v) in the ΛH1-list and return H1(m,R, S) as the
answer to the oracle query. Clearly, in the random oracle
model, v is randomly chosen from Z

∗
q , then H1(m,R, S)

is uniformly distributed in G1, and this game is therefore
perfectly indistinguishable from the previous one. Hence,

Pr[Forge3] = Pr[Forge2]. (13)

Game4: In this game, we simulate the random oracle
OS . When a fresh query m is asked, we will pro-
ceed as follows: First, we choose three random numbers
u, v, w

R←− Z
∗
q , and compute R,S and ς , where

R = wP
S = uP − vH(IDA‖PA) = uP − vyP
ς = u(Ppub + PA) + wH(c) = uxP + wH(∆)

Then, we set H1(m,R, S) = v and store (m,R, S, v) in
the ΛH1-list. In the end, we return (R,S, ς) as a signature
σ on message m to A. In the random oracle model, this
game is also identical to the previous one. Hence,

Pr[Forge4] = Pr[Forge3]. (14)

At the end of Game4, the adversary A eventually
outputs a new valid signature-message pair (σ�,m�).
From the forking lemma due to Pointcheval and Stern
[18], if Pr[Forge4] ≥ 10(qs + 1)(qs + qh1)/q, then
ε = SuccEF-CMA

SCPBS,A ≥ 10(qs + 1)(qs + qh1)/q, and
then by replaying A with the same tape but differ-
ent choices of H1, A outputs two valid signatures
σ� = (R,S, ς) and σ′� = (R,S, ς ′) on the same
message m�, where ς = α(r + α−1H1(m,R, S) +
β)(xA + s)H(IDA‖PA) + αrH(∆) and ς ′ = α(r +
α−1H ′

1(m,R, S) + β)(xA + s)H(IDA‖PA) + αrH(∆).
Since H1(m,R, S) �= H ′

1(m,R, S), we can compute

xyP = (xA + s)H(IDA‖PA)
= 1

H1(m,R,S)−H′
1(m,R,S) · (ς − ς ′)

and output it as the CDH problem challenge. The total
running time τ ′ of solving the CDH problem is equal to
the running time of the forking lemma, which is bounded
by 120686qh1τ/ε, as desired. This concludes the proof.
�

VI. CONCLUSIONS

In this paper, we have studied self-certified partially
blind signature. Firstly, we formalized the definition and
security notions for self-certified partially blind signature,
and then proposed a novel and effective SCPBS scheme

based on the bilinear pairing. We have discussed its
partial blindness, and analyzed its unforgeability through
the technique of provable security. We have proved
that the proposed SCPBS scheme can truly generate
a secure self-certified partially blind signature, which
should solidly contribute to the development of electronic
cash systems.
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